

12TH INTERNATIONAL SYMPOSIUM ON PROCESS SYSTEMS ENGINEERING AND 25TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING

PART B

Edited by KRIST V. GERNAEY, JAKOB K. HUUSOM AND RAFIQUL GANI

COMPUTER-AIDED CHEMICAL ENGINEERING, 37

12TH INTERNATIONAL SYMPOSIUM ON PROCESS SYSTEMS ENGINEERING

&

25TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING

This page intentionally left blank

COMPUTER-AIDED CHEMICAL ENGINEERING, 37

12TH INTERNATIONAL SYMPOSIUM ON PROCESS SYSTEMS ENGINEERING AND 25TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING

PART B

Edited by

Krist V. Gernaey, Jakob K. Huusom and Rafiqul Gani

Department of Chemical and Biochemical Engineering Technical University of Denmark DK-2800 Lyngby, Denmark

Elsevier

Radarweg 29, PO Box 211, 1000 AE Amsterdam, The Netherlands The Boulevard, Langford Lane, Kidlington, Oxford OX5 1B, UK

Copyright © 2015 Elsevier B.V. All rights reserved

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means electronic, mechanical, photocopying, recording or otherwise without the prior written permission of the publisher

Permissions may be sought directly from Elsevier's Science & Technology Rights Department in Oxford, UK: phone (+44) (0) 1865 843830; fax (+44) (0) 1865 853333; email: permissions@elsevier.com. Alternatively you can submit your request online by visiting the Elsevier web site at http://elsevier.com/locate/permissions, and selecting Obtaining permission to use Elsevier material

Notice

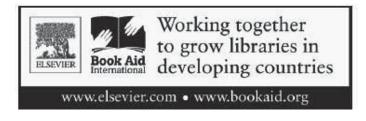
No responsibility is assumed by the publisher for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein.

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

Library of Congress Cataloging-in-Publication Data

A catalog record for this book is available from the Library of Congress


ISBN (Part B): 978-0-444-63577-8 ISBN (Set): 978-0-444-63429-0

ISSN: 1570-7946

For information on all Elsevier publications visit our web site at store.elsevier.com

Printed and bound in Great Britain

14 15 16 17 10 9 8 7 6 5 4 3 2 1

Contents

Contributed Papers			
T-3: Cyber-Infrastructure,	Informatics and	d Intelligent	Systems

Life cycle simulation for a process plant based on a two-dimensional co-simulation approach	
Mathias Oppelt, Gerrit Wolf, Leon Urbas	935
On the process of building a process systems engineering ontology using a semi-automatic construction approach Canan Dombayci, Javier Farreres, Horacio Rodríguez, Edrisi Muñoz, Elisabet Capón-García, Antonio Espuña, Moisès Graells	941
Graphical processing unit (GPU) accelerated solution of multi- dimensional population balances using high resolution finite volume algorithm Botond Szilagyi, Zoltan K. Nagy	947
Development of computer aided modelling templates for model re-use in chemical and biochemical process and product design: import and export of models Marina Fedorova, Gregor Tolksdorf, Sandra Fillinger, Günter Wozny,	
Mauricio Sales-Cruz, Gürkan Sin, Rafiqul Gani	953
BiOnto: An Ontology for biomass and biorefining technologies Nikolaos Trokanas, Madeleine Bussemaker, Eirini Velliou, Hella Tokos, Franjo Cecelja	959
Linking process, electrical and logical connectivity for supported fault diagnosis	065
David Dorantes Romero, Tone-Grete Graven, Nina F. Thornhill	965
An interactive framework for building and analysing models of urban energy systems K. Kuriyan	971
Model-based analysis of waste management systems through a natural language approach	
Vassilis Magioglou, Elisabet Capon-García, Sara Badr, Antonis Kokossis	977

vi

Enterprise-wide scheduling framework supported by knowledge management	
Elisabet Capón-García, Edrisi Muñoz, José M. Laínez-Aguirre, Antonio Espuña, Luis Puigjaner	983
Knowledge management to support the integration of scheduling and supply chain planning using Lagrangian decomposition Edrisi Muñoz, Elisabet Capón-García, Jose M. Laínez-Aguirre, Antonio Espuña, Luis Puigjaner	989
An ontological approach to integration of planning and scheduling activities in batch process industries Marcela Vegetti, Gabriela Henning	995
Constructing an ontology for physical-chemical processes Heinz A Preisig	1001
Contributed Papers T-4: Process and Product Synthesis-Design	
Improved design strategies for flexible hydrogen networks Chuei-Tin Chang, Che-Chi Kuo	1007
An integrated reactive distillation process for biodiesel production Eduardo S. Perez-Cisneros, Ricardo Morales-Rodriguez, Mauricio Sales-Cruz, Tomás Viveros-García, Ricardo Lobo-Oehmichen	1013
A sequential algorithm for the rigorous design of thermally coupled distillation sequences José A. Caballero, Juan A. Reyes-Labarta, Ignacio E. Grossmann	1019
Discovery of new zeolites for H ₂ S removal through multi-scale systems engineering	
Tingting Liu, Eric L. First, M. M. Faruque Hasan, Christodoulos A. Floudas	1025
Optimization of a fusel oil separation system using a dividing wall column	
José de Jesús Mendoza – Pedroza, Juan Gabriel Segovia – Hernández, Álvaro Orjuela – Londoño, Salvador Hernández	1031
Silane production through reactive distillation with intermediate condensers	
J. Rafael Alcántara – Avila, Hugo Alberto Sillas – Delgado, Juan Gabriel Segovia – Hernández, Fernando I. Gómez – Castro, Jorge A. Cervantes - Jauregui	1037
Optimal production of furfural and DMF from algae and switchgrass <i>Mariano Martín, Ignacio E. Grossmann</i>	1043
CO ₂ as feedstock: A new pathway to syngas <i>Flavio Manenti</i>	1049

Contents vii

Design and optimization of intensified non-sharp distillation configurations	
C. E. Torres Ortega, K. Stricker, M. Errico, BG. Rong	1055
Deterministic global optimization of multistage melt crystallization processes in hydroformylation Christian Kunde, Achim Kienle	1061
Design and economic evaluation of alternatives to effluents treatment on biodiesel production from soybean oil and palm oil <i>André F. Young, Fernando L. P. Pessoa, Eduardo M. Queiroz</i>	1067
Synthesis of transcritical ORC-integrated heat exchanger networks for waste heat recovery Cheng-Liang Chen, Po-Yi Li, Hui-Chu Chen, Jui-Yuan Lee	1073
Efficiency comparison of different design schemes of reactive distillation process for ethyl lactate production from fermentation-derived magnesium lactate Boonpradab Dangpradab, Panarat Rattanaphanee	1079
Tailor-made green diesel blends design using a decomposition-based computer-aided approach	1075
Li Yee Phoon, Haslenda Hashim, Ramli Mat, Azizul Azri Mustaffa A mathematical programming targeting method to select treatment technologies ahead of design Athanassios Nikolakopoulos, Antonis Kokossis	1003
Optimal structure synthesis of ternary distillation system Hiroshi Takase, Shinji Hasebe	1097
Optimization and analysis of chemical synthesis routes for the production of biofuels Douglas Allan, W. Alex Marvin, Srinivas Rangarajan, Prodromos Daoutidis	1103
Design and economic evaluation of coal to synthetic natural gas (SNG) process Bor-Yih Yu, I-Lung Chien	1109
Water networks synthesis for industrial parks involving inter-plant allocation	
Lin-lin Liu, Jian Wang, Jian-ping Li, Jian Du, Feng-lin Yang Energy-saving design and control of a hybrid extraction/distillation system for the separation of pyridine and water Yi-Chun Chen, I-Lung Chien	1115 1121
Alternative hybrid liquid-liquid and distillation sequences for the biobutanol separation M. Errico, E. Sanchez-Ramirez, J. J. Quiroz-Ramìrez, J. G. Segovia-	
Hernández, BG. Rong	1127

viii Contents

1133
1139
1145
1143
1157
1163
1169
1175
1181
1187
1193

Contents

Optimal design of microfluidic platforms for diffusion-based PCR for "one-pot" analysis of cells	
Jordan Crow, Luke E. K. Achenie, Chang Lu, Sai Ma, Despina Nelie Loufakis, Zhenning Cao, Yiwen Chang	1199
A systematic methodology for optimal mixture design in an integrated biorefinery Lik Yin Ng, Viknesh Adniappan, Nishanth G. Chemmangattuvalappil, Denny K. S. Ng	1205
A systematic visual approach to ionic liquid design for carbon dioxide capture Fah Keen Chong, Nishanth G. Chemmangattuvalappil, Dominic C. Y. Foo, Mert Atilhan, Fadwa T. Eljack	1211
Intensification of C5 separation process by heat integration and thermal coupling Hsiao-Ching Hsu, San-Jang Wang, John Di-Yi Ou, David Shan Hill Wong	1217
Conceptual design of post-combustion CO_2 capture processes - packed columns and membrane technologies Mathias Leimbrink, Anna-Katharina Kunze, David Hellmann, Andrzej Górak, Mirko Skiborowski	1223
Natural gas to liquid transportation fuels and olefins (GTL+C2_C4) Onur Onel, Alexander M. Niziolek, Christodoulos A. Floudas	1229
Life-cycle assessment principles for the integrated product and process design of polymers from CO ₂	
Niklas von der Assen, Mathias Lampe, Leonard Müller, André Bardow	1235
Optimization-based methodology for wastewater treatment plant synthesis – a full scale retrofitting case study Hande Bozkurt, Krist V. Gernaey, Gürkan Sin	1241
An integrated framework for controllability assessment and solvent selection in post-combustion CO ₂ capture processes Theodoros Damartzis, Athanasios I. Papadopoulos, Panos Seferlis	1247
Using product driven process synthesis in the biorefinery Alexandra Kiskini, Edwin Zondervan, Peter Wierenga, Edwin Poiesz, Harry Gruppen	1253
Integrating expanders into sub-ambient heat exchanger networks Chao Fu, Truls Gundersen	1259
Water free XTL processes: is it possible and at what cost? Xinying Liu, Bilal Patel, Diane Hildebrandt	1265

X Contents

Energy and yield evaluation of an alcohols and hydrocarbons production plant using Rh-based catalysts with different promoters <i>Júlio C. C. Miranda, Gustavo H. S. F. Ponce, Harvey Arellano-Garcia, Rubens Maciel F., Maria R. Wolf M.</i>	1271
Computer-aided process analysis of an integrated biodiesel processes incorporating reactive distillation and organic solvent nanofiltration <i>Kathrin Werth, Kolja Neumann, Mirko Skiborowski</i>	1277
A thermodynamic targeting approach for the synthesis of sustainable biorefineries Bilal Patel	1283
A sustainability driven methodology for process synthesis in agro-food industry	
Jochem Jonkman, Jacqueline M. Bloemhof, Jack G. A. J. van der Vorst, Albert van der Padt	1289
Evaluation of dimethyl carbonate and ethylene glycol production from biomass	
Chayanit Choomwattana, Aksornchan Chaianong, Worapon Kiatkittipong, Pichayapan Kongpanna, Suttichai Assabumrungrat	1295
Simulation of carbon-dioxide-capture process using aqueous ammonia <i>Akrawin Jongpitisub, Kitipat Siemanond, Amr Henni</i>	1301
Energy efficient bioethanol purification by heat pump assisted extractive distillation Anton A. Kiss, Hao Luo, Costin Sorin Bildea	1307
Process design of a multi-product lignocellulosic biorefinery Aristide Giuliano, Massimo Poletto, Diego Barletta	1313
MINLP optimization model for water/wastewater networks with multiple contaminants	
Kittichai Pungthong, Kitipat Siemanond	1319
Design of separation processes with ionic liquids Worawit Peng-noo, Kusuma Kulajanpeng, Rafiqul Gani, Uthaiporn Suriyapraphadilok	1325
Systematic screening of fermentation products as future platform chemicals for biofuels Kristen Ulonska, Birgitta E. Ebert, Lars M. Blank, Alexander Mitsos,	
Jörn Viell	1331
From fed-batch to continuous enzymatic biodiesel production Jason Price, Mathias Nordblad, John M. Woodley, Jakob K. Huusom	1337
Feed flexibility of CH ₄ combined reforming for methanol production Benjamín Cañete, Nélida B. Brignole, Carlos E. Gigola	1343

Contents xi

Process alternatives for second generation ethanol production from sugarcane bagasse Felipe F. Furlan, Roberto C. Giordano, Caliane B. B. Costa, Argimiro R. Secchi, John M. Woodley	1349
Simulation study of heat transfer enhancement due to wall boiling condition in a microchannel reactor block for Fischer-Tropsch synthesis Krishnadash S. Kshetrimayum, Park Seongho, Jong Ikhwan, Na Jonggeol,	
Han Chonghun	1355
CO ₂ vs biomass: Identification of environmentally beneficial processes for platform chemicals from renewable carbon sources <i>André Sternberg, Holger Teichgräber, Philip Voll, André Bardow</i>	1361
Design and optimization of intensified quaternary Petlyuk configuration	
Massimiliano Errico, Pietro Pirellas, Ben-Guang Rong, Juan Gabriel Segovia-Hernández	1367
Techno-economic analysis of power and hydrogen co-production by an IGCC plant with CO ₂ capture based on membrane technology Daniele Sofia, Aristide Giuliano, Massimo Poletto, Diego Barletta	1373
Synthesis of water treatment processes using mixed integer programming Mariya N. Koleva, Eleftheria M. Polykarpou, Songsong Liu, Craig A. Styan, Lazaros G. Papageorgiou	1379
Viability of technologies for CO2 capture and reuse in a FPSO: Technical, economic and environmental analysis Bruna C. S. Lima, Ofélia Q. F. Araújo, José L. de Medeiros,	10,7
Cláudia R. V. Morgado	1385
A superstructure-based framework for simultaneous process synthesis, heat integration, and utility plant design S. Murat Sen, James A. Dumesic, Christos T. Maravelias	1391
Process design and optimization of integrated shale gas process for green chemicals production Chang He, Fengqi You	1397
Value-added chemicals from microalgae: A sustainable process design using life cycle optimization Jian Gong, Fengqi You	1403
The effect of charge composition on the optimal operational parameters of a batch extractive distillation process	
Laszlo Hegely, Peter Lang	1409

xii Contents

VDDD I al. The characteristics for large	
VPPD Lab -The chemical product simulator Sawitree Kalakul, Rehan Hussain, Nimir Elbashir, Rafiqul Gani	1415
Synthesis of flexible heat exchanger networks integrated with reconfigurable control design Lautaro Braccia, Patricio Luppi, Maximiliano García, Marta S. Basualdo	1421
Computer-aided approach for designing solvents blend for herbal phytochemical extraction Siti Nuurul Huda Mohammad Azmin, Nor Alafiza Yunus, Azizul Azri Mustaffa, Sharifah Rafidah Wan Alwi, Lee Suan Chua	1427
Evolutionary algorithm for de novo molecular design considering multi-dimensional constraints Robert H. Herring III, Mario R. Eden	1433
Data mining and regression algorithms for the development of a QSPR model relating solvent structure and ibuprofen crystal morphology <i>Shounak Datta, Robert H. Herring III, Mario R. Eden</i>	1439
Designing reactants and products with properties dependent on both structures Vikrant A. Dev, Nishanth G. Chemmangattuvalappil, Mario R. Eden	1445
Conceptual design of an internally heat-integrated reactive distillation column based on thermodynamic and hydraulic analysis Zixin Lin, Weizhong An, Yawei Xu, Jianmin Zhu	1451
Carbon capture and utilisation: Application of life cycle thinking to process design Rosa Cuellar-Franca, Ioanna Dimitriou, Pelayo Garcia-Gutierrez, Rachael H. Elder, Ray W. K. Allen, Adisa Azapagic	1457
Topology optimization for biocatalytic microreactor configurations Inês P. Rosinha, Krist V. Gernaey, John M. Woodley, Ulrich Krühne	1463
Design of hybrid heat-integrated configuration for indirect reactive distillation processes Kuo-Chun Weng, Hao-Yeh Lee	1469
Optimization of ionic liquid recycling in Ionic Liquid-based Three Phase Partitioning processes Enrique Alvarez-Guerra, Angel Irabien	1475
Optimization of the Integrated Gasification Combined Cycle Using Advanced Mathematical Models Bongani Mvelase, Thokozani Majozi	1481
Dongana miransa, inanakana minjak	1701

Contents xiii

Contributed Papers T-5: Process Dynamics, Control and Monitoring

Nonparametric soft sensor evaluation for industrial distillation plant Andrey Torgashov, Konstantin Zmeu	1487
Comparing temperature difference control schemes for dividing-wall distillation columns	
Yang Yuan, Haisheng Chen, Jieping Yu, Kejin Huang	1493
A decentralised multi-parametric model predictive control study for a domestic heat and power cogeneration system <i>Nikolaos A. Diangelakis, Efstratios N. Pistikopoulos</i>	1499
A control strategy for periodic systems - application to the twin-column MCSGP Maria M. Papathanasiou, Fabian Steinebach, Guido Stroehlein, Thomas Müller-Späth, Ioana Nascu, Richard Oberdieck, Massimo Morbidelli, Athanasios Mantalaris, Efstratios N. Pistikopoulos	1505
Design of multiparametric NCO-tracking controllers for linear dynamic systems Muxin Sun, Benoît Chachuat, Efstratios N. Pistikopoulos	1511
A performance-oriented robust framework for the online model-based optimization and control of (fed-) batch systems Francesco Rossi, Flavio Manenti, Gintaras V. Reklaitis, Guido Buzzi-Ferraris	1517
Raman-based advanced control of an absorption desorption system Erik Esche, David Müller, Michael Maiwald, Günter Wozny	1523
A comparative study between neural networks (NN)-based and adaptive-PID controllers for the optimal bio-hydrogen gas production in microbial electrolysis cell reactor <i>Azwar M. Yahya, Mohd A. Hussain, A. K. Abdul Wahab, M. F. Zanil</i>	1529
Reaction monitoring of cementing materials through multivariate techniques applied to in situ synchrotron X-ray diffraction data Alessandra Taris, Massimiliano Grosso, Mariarosa Brundu, Vincenzo Guida, Alberto Viani	1535
Multivariate fault isolation using lasso-based penalized discriminant analysis Te-Hui Kuang, Zhengbing Yan, Yuan Yao	1541
Flexible operation of CO2 capture processes integrated with power plant using advanced control techniques Ana-Maria Cormos, Mihaela Vasile, Mircea-Vasile Cristea	1547
Modified minimum variance approach for state and unknown input estimation Yukteshwar Baranwal, Pushkar Ballal, Mani Bhushan	1553
I UNICOHIVAL DALAHIVAL, I ASHMA DAHAL, MAH DHASHAH	1223

xiv

A new software development methodology for controllability analysis of forced circulation evaporator system Afshin Sadrieh, Parisa A. Bahri	1559
A nonlinear quasi-unknown input observer for the chemostat droop model Alexander Schaum, Thomas Meurer	1565
PAT for reactive crystallization process optimization for phosphorus recovery from sewage sludge Yi Liu, Haiyan Qu	1571
Time-optimal operation of diafiltration processes in the presence of fouling Martin Jelemenský, Ayush Sharma, Radoslav Paulen, Miroslav Fikar	1577
Supercritical gas recycle analysis for surge control of centrifugal compressors Sara Budinis, Nina F. Thornhill	1583
Software sensors design and selection for the production of biodiesel from grease trap wastes Efrén Aguilar-Garnica, Juan P. García-Sandoval	1589
Improving data reliability for process monitoring with fuzzy outlier detection Harakhun Tanatavikorn, Yoshiyuki Yamashita	1595
Inversion-based feedforward control design for the droop model Alexander Schaum, Thomas Meurer	1601
Effect of solvent content on controllability of extractive distillation columns Wagner B. Ramos, Marcella F. Figueirêdo, Karoline D. Brito, Romildo P. Brito	1607
High purity, high recovery, multi-component methanol distillation control Isuru A. Udugama, Tajammal Munir, Robert Kirkpatrick, Brent R. Young, Wei Yu	1613
Implementation of model predictive control in industrial gasoline desulfurization process Kornkrit Chiewchanchairat, Pornchai Bumroongsri, Veerayut Lersbamrungsuk, Amornchai Apornwichanop, Soorathep Kheawhom	1619
Maximizing profit of semi batch autocatalytic esterification process in the presence of disturbance: application of cascaded-conditional based online dynamic optimization <i>Fakhrony S. Rohman, Suhairi A. Sata, Norashid Aziz</i>	1625
,	

Contents

MIMO neural Wiener based model predictive control (NWMPC) for MTBE reactive distillation using simulated annealing- particle swarm optimization (SA-PSO)	1631
Muhamad N. Murat, Sudibyo, Norashid Aziz A real time particle size control framework in non-isothermal	1031
antisolvent crystallization processes Navid Ghadipasha, Stefania Tronci, Roberto Baratti, Jose A. Romagnoli	1637
Multivariable adaptive Lyapunov fuzzy controller for pH neutralisation process Mohd F. Zanil, Mohd A. Hussain	1643
Detection of changes in fouling behaviour by simultaneous monitoring of thermal and hydraulic performance of refinery heat exchangers <i>Emilio Díaz-Bejarano, Francesco Coletti, Sandro Macchietto</i>	1649
Dosage of filter aids in the case of pure surface filtration – an optimal control approach Michael Kuhn, Heiko Briesen	1655
Best of breed control of platinum precipitation reactors Rotimi Agbebi, Carl Sandrock	1661
Multivariate analysis of industrial scale fermentation data Lisa Mears, Rasmus Nørregård, Stuart M. Stocks, Mads O. Albaek, Gürkan Sin, Krist V. Gernaey, Kris Villez	1667
Model-based observation and design of crystal shapes via controlled growth-dissolution cycles Holger Eisenschmidt, Naim Bajcinca, Kai Sundmacher	1673
Adsorption based competitive purity control in crystallization Akos Borsos, Zoltan K. Nagy	1679
Stabilizing control for reactor/separator processes with gas and liquid recycles	
Hiroya Seki Extended VRFT method for controller design of nonlinear systems	1685
based on block-oriented model structures <i>Jyh-Cheng Jeng, Yi-Wei Lin, Min-Wei Lee</i>	1691
Linear or nonlinear? Comparing measures of nonlinearity Malik M. Tahiyat, M. A. A. Shoukat Choudhury	1697
Model predictive control for the self-optimized operation in wastewater treatment plants	1702
Mario Francisco, Sigurd Skogestad, Pastora Vega Off-line tube-based robust model predictive control for uncertain and	1703
highly exothermic polymerization processes Pornchai Bumroongsri, Veerayut Lersbamrungsuk, Soorathep Kheawhom	1709

xvi Contents

Optimization based constrained unscented gaussian sum filter Krishna K. Kottakki, Sharad Bhartiya, Mani Bhushan	1715
Systematic control structure evaluation of two-stage-riser fluidized catalytic pyrolysis processes Zhihong Yuan, Ping Wang, Mario R. Eden	1721
Novel data segmentation methods for data driven process analyses Rajesh Paul, M. A. A. Shoukat Choudhury	1727
Robust model predictive control strategy for LTV and LPV systems of the internal reforming solid oxide fuel cell Narissara Chatrattanawet, Soorathep Kheawhom, Amornchai Arpornwichanop	1733
Plantwide predictive monitoring of sulfur emissions in tail gas treatment units	
Eva M. Speelmanns, Francesco Rossi, Andres R. Leon-Garzon, Flavio Manenti	1739
Robust control of industrial propylene-propane fractionation process Cristian Patrascioiu, Nicolae Paraschiv, Anh C. Minh, Marian Popescu	1745
Improved optimization-based design of PID controllers using exact gradients Chriss Grimholt, Sigurd Skogestad	1751
Enhancing xylitol bio-production by an optimal feeding policy during fed-batch operation Oscar A. Prado-Rubio, Héctor Hernández-Escoto, Divanery Rodriguez-Gomez, Sarote Sirisansaneeyakul, Ricardo Morales-	1757
Rodriguez Performance evaluation of bayesian state estimators for nonlinear dae systems using a moderately high dimensional reactive distillation column model Jalesh L. Purohit, Sachin C. Patwardhan, Sanjay M. Mahajani	1757 1763
State estimation in fermentation of lignocellulosic ethanol. Focus on the use of pH measurements Miguel Mauricio-Iglesias, Krist V. Gernaey, Jakob K. Huusom	1769
Dynamic simulation and analysis of slug flow impact on offshore natural gas processing: TEG dehydration, Joule-Thomson expansion and membrane separation Lara de O. Arinelli, Ofélia Q. F. Araújo, José L. de Medeiros	1775
Contributed Papers T-6: Abnormal Events Management and Process Safety	
Automata based test plans for fault diagnosis in batch processes Chuei-Tin Chang, Wei-Chung Hsieh	1781

Contents

Modelling and monitoring of natural gas pipelines: new method for leak detection and localization estimation Xinghua Pan, M. Nazmul Karim	1787
Dynamic artificial immune system with variable selection based on causal inference Yidan Shu, Jinsong Zhao	1793
A smart safety system for chemical processes Rafael M. Soares, Argimiro R. Secchi, José C. Pinto	1799
Shape constrained splines with discontinuities for anomaly detection in a batch process Kris Villez, Jonathan Habermacher	1805
Quantifying model uncertainty in scarce data regions – a case study of particle erosion in pipelines <i>Wei Dai, Selen Cremaschi</i>	1811
Leak identification using extended Kitanidis-Kalman filter C. Ganesh, Pushkar Ballal, Mani Bhushan, Sachin C. Patwardhan	1817
Process monitoring and fault detection in non-linear chemical process based on multi-scale kernel Fisher discriminant analysis Norazwan M. Nor, Mohd A. Hussain, Che R. C. Hassan	1823
Hierarchical fault propagation and control strategy from the resilience engineering perspective: A case study with petroleum refining system <i>Jinqiu Hu, Laibin Zhang, Xi Ma, Zhansheng Cai</i>	1829
Risk analysis applied to bioethanol dehydration processes: azeotropic distillation versus extractive distillation Adriana Avilés-Martínez, Nancy Medina-Herrera, Arturo Jiménez-	
Gutiérrez, Medardo Serna-González, Agustín J. Castro-Montoya	1835

Krist V. Gernaey, Jakob K. Huusom and Rafiqul Gani (Eds.), 12th International Symposium on Process Systems Engineering and 25th European Symposium on Computer Aided Process Engineering. 31 May – 4 June 2015, Copenhagen, Denmark © 2015 Elsevier B.V. All rights reserved.

Optimization of a Fusel Oil Separation System Using a Dividing Wall Column

José de Jesús Mendoza – Pedroza^a, Juan Gabriel Segovia – Hernández^a, Álvaro Orjuela – Londoño^b. Salvador Hernández^a

^a Campus Guanajuato, Departamento de Ingeniería Química, Universidad de Guanajuato, Noria Alta s/n, 36050, Guanajuato, Gto., México.

Abstract

Fusel oil is a valuable byproduct of the fuel ethanol industry that can be used to isolate C6 alcohols and other fragrances and flavor ingredients. In this work we propose two distillation schemes for obtaining isoamyl alcohol from fusel oil: a conventional distillation sequence and a dividing wall column. After validation of thermodynamic models to accurately describe phase equilibria of fusel components (VLE and LLE), a dividing wall column (DWC) separation scheme was developed. Both traditional sequential distillation and DWC system were optimized using differential evolution and tabu list coupled to ASPEN PLUS. Results indicate that significant energy and economic savings can be obtained in the purification of fusel oil (a non ideal mixture) using a DWC scheme compared to conventional configuration.

Keywords: Optimization; fusel; dividing wall column

1. Introduction

Through the years, the production of ethanol by fermentation has increased due to the biofuels demand, and consequently generation of by-products of this industry such as fusel oil has increased as well. Fusel has been characterized as a liquid waste and used as fuel in the boilers within distilleries. It is a mixture obtained as a side cut during ethanol distillation, mainly composed of i-amyl alcohol, water, isobutanol, ethanol and other short chain alcohols (C3-C5). These alcohols can be considered valuable raw material for various products of industrial interest such as: biosolventes, extractants, flavors, fragrances, pharmaceuticals and plasticizers, among others. According to different characterizations, major components of fusel oil are isoamyl alcohol, water and ethanol, accounting for ~98% of the total mixture. In this context, two distillation schemes to purify isoamyl alcohol and ethanol were developed. Such schemes were constructed taking into account continuous distillation sequences currently used in ethanol distilleries. A traditional scheme (Figure 1) is comprised of three distillation columns where most ethanol and water are separated in the top of the first column. This stream is sent to a subsequent column where azeotropic ethanol can be extracted on the top and water at the bottoms product. Bottoms product from first column is sent to a third distillation column connected to a decanter, where isoamyl alcohol is obtained as a bottoms pure product.

Departamento de Ingeniería Química y Ambiental, Universidad Nacional de Colombia. Bogotá Colombia. Carrera 45 N° 26-85 - Edificio Uriel Gutiérrez Bogotá D.C. - Colombia

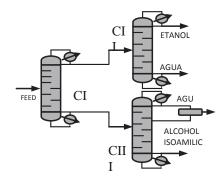


Figure 1. Conventional distillation system for fusel purification.

Dividing wall column has been used in the purification of ternary systems with significantly savings in energy consumption and capital costs over conventional simple column configurations (Hernández et al., 1996). Specifically, the dividing wall column (DWC) has been successfully implemented in many industrial separations (Olujic et al., 2003). In the dividing wall distillation (DWC) scheme proposed in this work (Figure 2), azeotropic ethanol is obtained as the top product of the main column, while isoamyl alcohol is removed from the bottoms product. Water is removed using a side stream connected to a decanter taking advantage of the liquid phase immiscibility

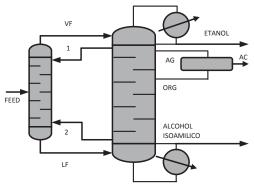


Figure 2. DWC system for fusel purification.

2. Case study

Composition of fusel oil was established according to the analysis performed to six different samples from different sugar mills in Colombia. Samples were characterized by gas chromatography coupled to mass spectrometry. The following components were detected: ethanol, water, n-butanol, isobutanol, isoamyl alcohol and 2-ethylhexanol. The composition of the mixture of study is presented in Table 1.

able I composition of the infature of stud					
T=25°C $P=1$ atm					
Component	composition % mol				
Etanol	0.1258				
Water	0.143				
isoamyl alcohol	0.7047				
n-butanol	0.0139				
isobutanol	0.012599				
2-ethyl-hexanol	1x10 ⁻ 6				

Table 1 Composition of the mixture of study.

Thermodynamic of phase equilibria was validated by regression of binary and ternary equilibrium literature reports using a NRTL-HOC activity-based model. To obtain the corresponding thermodynamic parameters, NIST equilibrium data incorporated within ASPEN PLUS were used. Using the regression tool included in the same software, VL and LL data were simultaneously fit to accurately model the phase behavior within the distillation system

3. Optimization problem

During optimization of distillation schemes, total annual cost (TAC) minimization was used as objective function. This function takes into account energy consumption, utilities, and column size. The minimization of this objective is subjected to the required recoveries and purities of each product stream, i.e.:

Min (TAC) =
$$f(N_{tn}, N_{fn}, R_{rn}, F_{rn}, D_{cn})$$
 (1)
Constrain: $\vec{y}_m \ge \vec{x}_m$

where Ntn and Nfn are the total number of stages and the feed stages of column respectively, Rrn is the reflux ratio, Frn is the distillate flow, Dcn is the column diameter, ym and xm are the obtained and required purities vectors of the m components, respectively. This minimization implies the manipulation of 14 continuous and discrete variables for each route process, where 5 variables are used for the design of each column. Note that since the product streams flows are manipulated, the recoveries of the key components in each product stream must be included as a restriction for the optimization problem. During each optimization, a Pareto front was generated, plotting the objective function (total annual cost) against the flow of impurities. Impurities flow in each product stream is the sum of the components which are not present in high purity in out flowrate. A list of manipulated variables for both schemes are listed in Table 2.

Conventional **DWC** scheme Manipulated variable CI CII CIII PREF PETLYUK number of stages C_n, N_{Cn} X X X X X X feed stage in column C_n, N_{F,Cn} X X Х X distillate streamflow of column C_n, R_{Cn} X X X X reflux ratio in column C_n X X bottoms streamflow of column C_n X X feed stage of liquid interconnection flow FL in column C_i, N_{FL},C_i X feed stage of liquid interconnection flow FV in column C_i, N_{FL}, C_i X feed stage of liquid interconnection flow FL in column C_i, N_{FL}, C_i X vapor interconnection flow, FV liquid interconnection flow, FL X

Table 2 Manipulated variables during process optimization

4. Results

In this section, we present the set of optimal designs in Pareto front, for both schemes: conventional (Figure 3) and divided wall column (Figure 4).

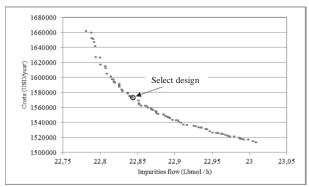


Figure 3. Pareto front of the conventional scheme.

In the conventional configuration, in column CI the number of stages and reflux ratio determine the value of the objective function (TAC) as it is where is performed the separation of water from alcohols including ethanol which forms a minimum temperature azeotrope. Overall, this column represents over 80% of energy consumption scheme. In column CII there is a close relationship between energy consumption, the purity of ethanol and the reflux ratio, due to the higher reflux, there is greater demand for energy and it results in greater purity of ethanol. This was seen as a high purity of ethanol increases energy consumption by 12%. In column CIII was observed the higher flowrate in the bottom stream, the reboiler duty is increased.

Figure 3 shows the Pareto front obtained after optimization, it is clear that both objective functions evaluated are in conflict each other. The Pareto front is formed for several points that accomplish all purity and recovery restriction (84 %, 70 % and 99 % mol). In a general way, the Pareto front consists in three sections, one section where are located designs which have preferably a high number of stages and a high reflux ratio. On the other hand at the end of Pareto front are located some sequences which showed a minor economic impact due to these designs include relative few stages. At the middle of the Pareto front is located a feasible zone, where are designs with suitable values of TAC and impurities flows comparing extremes of plot.

Figure 4. Pareto front Petlyuk scheme.

For the divided wall column, a clear relationship is showed between the reboiler duty and TAC, and high reflux ratio presents a high reboiler duty. Besides, when divided wall column (Figure 4) was evaluated with the same objective functions, and the same restrictions purity of the components of interest, from the Pareto front we appreciate a section with high cost associated to high reflux ratio to achieve a low impurities flow.

Table 3. Design specifications of proposed schemes.							
	Design	n specifications	3				
Equipment		Pref	Petlyuk	CI	CII	CIII	
Stages		10	26	16	21	7	
Feed stage		8	22	11	15	5	
Distillate flow (Lbmol/hr)			13	20	8		
Reflux ratio			6	6	6		
Bottom flow (Lbmol/hr)						5	
Feed stream	FV		17				
	FL		24				
	ORG		22				
Feed products Flow interconnection (Lbmol/hr)	ETHANOL		1				
	ISOAMYL ALCOHOL		26				
	AC		22				
	1		16				
	2		25				
	AC		60				
	1		12				
	2		95				
Composition	Ethanol		0.84		0.84		
	Water		0.71		0.72		
	Isoamyl		0.99			0.99	
Energy consuption (Btu/h)		8′130,642.04		10′214,657.14			
Casta (USD/ssass)		420 221 21		1/572 (77 42			

Table 3. Design specifications of proposed schemes.

Characteristics of the design highlighted in Figure 4 are presented in Table 3. Notice that this design includes few stages considering 50 stages as limit. Nevertheless all purity restrictions were accomplished. As well, Table 3 shows general characteristic of design highlighted in Figure 4 such as stages, reflux ratios and interconnection flows values. This design satisfied in the same manner all restrictions. When comparing both schemes, savings of 73% in the total annual costs (TAC) and a 20% saving in energy consumption are obtained. In order to know purity values through stages in divided wall column, Figure 5 shows a concentration profile, which confirms the high isoamyl alcohol and ethanol purities obtained in this column. This behavior of divided wall column projecting itself as a good alternative in fusel purification due to energy and costs savings.

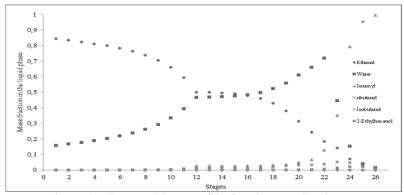


Figure 5. Composition profile for the DWC scheme.

5. Conclusions

In this work, an optimization procedure, based in differential evolution and tabu list coupled to ASPEN PLUS, was proposed for the optimization of complex distillation columns. The results show that divided wall column represents a good option for fusel oil distillation due to the benefits that would be obtained in terms of reduction in total

annual cost (TAC) over the traditional distillation sequence used in industry. The separation of isoamyl alcohol at a high purity and low cost using a dividing wall column represents an excellent option for purification of fusel oil in industry. These results represent a new vision in regard to highly nonideal mixture, where heterogeneous azeotropes are present in multicomponent systems and they are purified in a DWC.

References

- C. Floudas, and C. Gounaris, 2009, A review of recent advances in global optimization, Journal of Global Optimization, 45, 1, 3-38
- S. Hernández, and A. Jiménez, 1996, Design of optimal thermally coupled distillation, systems using a dynamic model, Chemical Engineering Research and Design,74 -357
- K. Muralikrishna, and Madhavan, 2002, Development of dividing wall distillation column design space for a specified separation, Chem. Eng. Res, Des, 155–166
- Z. Olujic, and B. Kaibel, 2003, Distillation column internals/configurations for process intensification, Chemical and Biochemical Engineering Quarterly, 17-301
- G. Segovia, and V. Rico, 2006, Thermodynamically equivalent distillation schemes to the Petlyuk column for ternary mixtures, Energy, 31, 2176-2183
- M. Srinivas, and G. Rangaiah, 2007, Differential Evolution with Taboo List for Solving Nonlinear and Mixed -Integer Nonlinear Programming Problems , Ind. Eng. Chem. Res, 46, 7126-7135
- R. Storn, and K. Price, 1997, Differential evolution A simple and efficient heuristic for global optimization over continuous spaces, Journal of Global Optimization, 11, 341–359
- M. Srinivas, and G. Rangaiah, 2007, Differential Evolution with Taboo List for Solving Nonlinear and Mixed-Integer Nonlinear Programming Problems, Ind. Eng. Chem. Res, 46, 7126-7135
- C. Triantafyllou, and R. Smith, 1992, The Design and Optimization of Fully Thermally Coupled Distillation Columns, Trans. Inst. Chem. Eng, 70, 118-132
- J.M. Zamora, and I. E. Grossmann, 1998, Continuous global optimization of structured process systems models, Computers & Chemical Engineering, 22, 12, 1749-1770